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Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by 10 

satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage 

decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is 

represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and 

energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same 

time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with 15 

good prospects for improving model simulations and gaining better insights into the role of vegetation within the global 

water cycle. 

In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing 

the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. 

The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil 20 

moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the 

implications of including vegetation on the simulation results, with a particular focus on the partitioning between water 

storage components.  To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying 

in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. 

Both experiments show good overall performance, but including vegetation data led to even better performance and more 25 

physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) 

regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages 

are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage 

components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant 

accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages 30 

as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the 
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need for further observations to identify the adequate model structure rather than only model parameters for a reasonable 

representation and interpretation of vegetation-water interactions. 

1 Introduction 

Since 2002 the Gravity Recovery and Climate Experiment (GRACE) mission facilitates global monitoring of terrestrial 35 

water storage (TWS) variations from space – a milestone of global hydrology (Rodell, 2004;Famiglietti and Rodell, 2013). 

Observed TWS variations from GRACE have since become a cornerstone for diagnosing trends in water resources due to 

climate change or anthropogenic activities (Rodell et al., 2018;Reager et al., 2015;Scanlon et al., 2018;Syed et al., 

2009;Tapley et al., 2019), as well as for benchmarking and improving global hydrological models (GHMs) (Scanlon et al., 

2016;Döll et al., 2014;Werth et al., 2009;Zhang et al., 2017;Kumar et al., 2016;Eicker et al., 2014). Significant co-variations 40 

between GRACE-TWS and the global land carbon sink (Humphrey et al., 2018) and surface temperatures (Humphrey et al., 

2021) highlight the importance of the water-cycle as nexus in the earth system.  

However, GRACE TWS estimates represent a vertically integrated signal of all water in snow, ice, soil, surface and 

groundwater. Thus, understanding processes and mechanisms of TWS variations requires attribution of TWS variations to 

individual storage components. Despite advancements in remote sensing, large-scale quantification of these components 45 

based on observations remains challenging. For example, remote sensing-based estimates of soil moisture only capture 

depths up to 5 cm and do not necessarily reflect the moisture availability in the deeper soil column (Dorigo et al., 2015). 

Therefore, GHMs are necessary to interpret TWS variations in terms of contributions by snow, soil moisture, ground or 

surface water. However, several studies suggested that current state-of-the-art GHMs cannot reproduce key patterns of 

observed TWS variations and show partly diverging TWS partitioning (Scanlon et al., 2018;Schellekens et al., 2017;Zhang 50 

et al., 2017). This uncertainty of the available tools to interpret TWS variations is clearly a major obstacle for diagnosing and 

understanding global changes of the water cycle, which is increased by differing model structures and grown complexity of 

existing GHMs. 

Among previous studies, Trautmann et al. (2018) showed that a simple large-scale hydrological model that is calibrated in a 

multi-criteria fashion against multiple global hydrological data streams simultaneously yields very good model performance 55 

compared to state-of-the art GHMs. This study contributed important insights in the drivers of TWS variations across spatial 

and temporal scales in northern high latitudes, in particular with respect to contributions by snow vs liquid water storages. In 

this study, we follow a similar framework of using multiple observational data streams to constrain a simple hydrological 

model to understand the partitioning of TWS components, yet expand to global scale and with further partitioning of liquid 

water storages.  60 

Among liquid water storages, especially the differentiation between soil moisture and ground water poses a challenge. 

Reflecting on the determinants of rather shallow soil moisture vs. deeper groundwater storage variations, it is apparent that 

under most conditions the soil moisture state itself is the first order control valve. In particular, it determines the amount of 
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water that is available for soil water uptake for evapotranspiration but also for percolation into deeper soil layers and 

consequently recharge into the groundwater storage. The two key processes that shape soil moisture dynamics, infiltration 65 

and evapotranspiration (ET), are strongly mediated by the presence and properties of vegetation (Wang et al., 2018). For 

example, vegetation promotes infiltration over surface runoff due to larger surface roughness, dampened precipitation 

intensities, more soil macro pores due to rooting and biological activity. In fact, such roles of vegetation in a global climate 

model were already envisioned and evaluated almost 4 decades ago (Rind, 1984). Besides, rooting depth and soil properties 

like soil texture and organic matter content control the size of the soil moisture reservoir available for ET, and how ET 70 

responds to drought stress conditions (Baldocchi et al., 2021;Yang et al., 2020). The significance of interactions between 

vegetation and soil moisture are at the heart of ecohydrology (Rodriguez-Iturbe et al., 2001) and have become evident in 

many theoretical and experimental studies. While many studies analysed effects of water availability on vegetation 

functioning (Porporato et al., 2004;Reyer et al., 2013;Wang et al., 2001;Yang et al., 2014), the inverse pathway of how 

vegetation properties influence dynamics of water pools and the partitioning of TWS in large scale models has received 75 

surprisingly little attention. 

 

Therefore, the objective of this study is to investigate the effect of vegetation-dependent parameterizations of key 

hydrological processes on TWS partitioning in a multi-criteria model data fusion approach. The model, an expanded version 

of Trautmann et al. (2018), is a simple conceptual 4-pool water balance model. Model parameters are calibrated against 80 

TWS variations from GRACE (Wiese, 2015), ET from FLUXCOM (Jung et al., 2019), runoff from GRUN (Ghiggi et al., 

2019) and ESA CCI soil moisture (Dorigo et al., 2017). We contrast two experiments which differ only with respect to how 

vegetation-related parameters are defined: 1) a baseline experiment with global uniform parameters, 2) a vegetation 

experiment where vegetation parameters vary in space and partly in time. In contrast to the traditional approach of 

spatializing vegetation parameters by plant functional types or land cover classes and keeping this a-priori parameterization 85 

fixed during model application, we take advantage of continuous information on few key properties that link vegetation and 

hydrological processes: 1) spatially distributed and time-varying active vegetation cover that influences transpiration demand 

and interception storage, 2) spatial pattern of soil water supply for transpiration via roots, and 3) spatially distributed and 

time-varying the influence of vegetation cover on infiltration and runoff generation. Specifically, we are addressing the 

following questions: 90 

 

1) Where, when, and by how much are hydrological simulations improved by spatially distributed vegetation 

parameters? 

2) To what extent does the attribution and interpretation of TWS variations for individual storage components change 

when introducing spatial and temporal variation of vegetation parameters? 95 
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1.1 Methods 

In the first section we give a general overview on the design of this study and it’s spatial and temporal coverage. 

Subsequently, the used model and data streams as well as the calibration and evaluation approach are explained in detail. 

1.2 Overview 

To assess the potential effect of including continuous information on vegetation, we compare two model variants that are 100 

based on the same conceptual structure: 1) a base model with static, globally uniform parameter values (B), and 2) a model 

variant that includes spatially (and temporally) varying vegetation characteristics by defining vegetation parameters as 

function of global data products (VEG). 

Forced with global climate-data, the parameters of each variant are calibrated for a spatial subset against multiple Earth-

observation based data. In the B experiment, the parameters themselves are calibrated and globally constant parameter values 105 

are obtained. In the VEG experiment, we describe vegetation related parameters as the linear product of a calibrated scalar 

and spatio-temporal varying vegetation variables. By calibrating the scalar, we include the continuous pattern from the data, 

but weight it to best fit with observational constraints. 

Once the parameters are calibrated, the simulations for the whole domain (global) are used to evaluate the model 

performance at different spatial and temporal scale. To finally delineate the effect of including vegetation data on the 110 

composition of simulated total water storage across temporal (mean seasonal, inter-annual) and spatial (local grid scale, 

spatially aggregated) scales, we use the Impact Index as defined by Getirana et al. (2017). 

 

The model is run on daily time steps at a 1°x1° latitude/longitude resolution, focusing on vegetated regions under primarily 

natural condition. To avoid biases of the calibrated model parameters due to processes that are not represented in the model 115 

structure, we exclude grid cells with > 10% permanent snow and ice cover, > 50% water fraction, > 20% bare land surface 

and > 10% artificial landcover fraction. These grid cells are masked out using the Globland20 fractional landcover v2 (Chen 

et al., 2014). Additionally, we exclude regions with a large human influence, mainly related to groundwater extraction, on 

the trend in GRACE TWS variations (Rodell et al., 2018). The final study area comprises 74% of global land area. All other 

data sets used in this study were resampled to the 1°x1° grid and subset to the same grid cells.  120 

Due to the temporal coverage of forcing data and observational constraints, we calibrate the model for the period 01/2002-

12/2014, while the global-scale model runs and analyses are performed for the period 03/2000-12/2014. Prior to each model 

run, all states are initialized by a 8-year spin-up period. The forcing for the spin-up period is assembled by randomly 

rearranging complete years of the forcing data.  

 125 
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2.2 Model Description 

The conceptual hydrological model is forced by daily precipitation, air temperature and net radiation (Table 1). It includes a 

snow component (see Trautmann et al. (2018)), a 2-layer soil water storage (wSoil), a deep soil water storage (wDeep) and a 

delayed, slow water storage (wSlow). The schematic structure of the model is shown in Fig. 1 and calibration parameters are 

explained in Table 2. 130 

Depending on air temperature (Tair), precipitation (Precip) is partitioned into snow fall (Snow), that accumulates in the snow 

storage (wSnow), and rain fall (Rain), that partly is retained in an interception storage. Interception throughfall together with 

snow melt are distributed among soil through infiltration and infiltration excess depending on the ratio of actual soil moisture 

and maximum soil water capacity following Bergström 1995:  

 135 

𝐼𝑒𝑥𝑐 = 𝐼𝑖𝑛 . [
∑ 𝑤𝑆𝑜𝑖𝑙(𝑙)

2
𝑙=1

∑ 𝑤𝑆𝑜𝑖𝑙max(𝑙)

2

𝑙=1

]

𝑝𝑏𝑒𝑟𝑔

            (1) 

 

where, Iexc is the infiltration excess, IIn is the incoming water from throughfall and snow melt, wSoil is the soil moisture and 

wSoilmax the maximum soil water capacity of each soil layer l, and pberg is a global calibration parameter. 

 140 

Part of the infiltration excess then replenishes a delayed water storage (wSlow), that acts as a linear reservoir and generates 

slow runoff (Qslow). The remaining infiltration excess represents fast direct runoff (Qfast).  Qfast and Qslow together represent 

total runoff Q, that flows out of the system, i.e., grid cell. 

Infiltrated water is distributed among 2 soil layers following a top-to-bottom approach, where the maximum capacity of the 

first soil layer is prescribed as 4 mm, in order to match the tentative depth of satellite soil moisture observations, while the 145 

storage capacity of the 2nd soil layer is a calibration parameter (wSoilmax(2)). The 2nd soil layer is connected with a deeper 

water storage (wDeep). The size of wDeep is defined as a multiple of wSoilmax(2) by the calibrated scaling parameter sdeep 

(Eq. 2). Depending on the moisture gradient between the two storages, water either percolates from the 2nd soil layer to the 

deeper soil, or it rises from the deeper storage into the 2nd soil layer, limited to a maximum flux rate.  

 150 

𝑓𝑝𝑜𝑡 = 𝑓𝑚𝑎𝑥 . 𝑤𝑔𝑟𝑎𝑑             (2) 

 

Where, fpot is the potential flux between both layers, fmax is the maximum flux rate (calibration parameter) and wgrad is the 

gradient of moisture calculated as 

 155 

𝑤𝑔𝑟𝑎𝑑 =
𝑤𝐷𝑒𝑒𝑝

𝑠𝑑𝑒𝑒𝑝.𝑤𝑆𝑜𝑖𝑙max(2)
−

𝑤𝑆𝑜𝑖𝑙(2)

𝑤𝑆𝑜𝑖𝑙max(2)
          (3) 
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where sdeep is the scaling parameter to derive the maximum capacity of wDeep as multiple of wSoilmax(2) (calibration 

parameter). 

The deeper storage therefore acts as a storage buffer, that linearly discharges further to the delayed water storage (wSlow). 160 

The wSlow, which also receives part of the infiltration excess, is thus representative of all delayed storage components.  

Evapotranspiration (ET) is represented by a demand-supply approach that is driven by a potential ET demand following 

Priestley-Taylor, and is limited by the available soil moisture supply. The ET is partitioned into interception evaporation 

(EInt), bare soil evaporation from the first soil layer (ESoil) and plant transpiration from the two soil layers (ETransp). 

Interception and plant transpiration are only calculated for the vegetated fraction of each grid cell, while bare soil 165 

evaporation is limited to the non-vegetated fraction of each grid. 

 

𝐸𝑆𝑜𝑖𝑙 = 𝑚𝑖𝑛(𝐸𝑆𝑜𝑖𝑙−𝑠𝑢𝑝, 𝐸𝑆𝑜𝑖𝑙−𝑑𝑒𝑚)           (4) 

𝐸𝑆𝑜𝑖𝑙−𝑑𝑒𝑚 = 𝑃𝐸𝑇. (1 − 𝑝𝑣𝑒𝑔)           (5) 

𝐸𝑆𝑜𝑖𝑙−𝑠𝑢𝑝 = 𝑤𝑆𝑜𝑖𝑙(1). 𝑘𝑆𝑜𝑖𝑙           (6) 170 

 

where, PET is the potential ET, pveg is the vegetation fraction of each grid cell (calibration parameter), and kSoil is the 

proportion of the first soil layer available for evaporation (calibration parameter). 

Similarly, transpiration is calculated as 

 175 

𝐸𝑇𝑟𝑎𝑛𝑠𝑝 = 𝑚𝑖𝑛(𝐸𝑇𝑟𝑎𝑛𝑠𝑝−𝑠𝑢𝑝, 𝐸𝑇𝑟𝑎𝑛𝑠𝑝−𝑑𝑒𝑚)          (7) 

𝐸𝑇𝑟𝑎𝑛𝑠𝑝−𝑑𝑒𝑚 = 𝑃𝐸𝑇. 𝛼𝑣𝑒𝑔 . 𝑝𝑣𝑒𝑔           (8) 

𝐸𝑇𝑟𝑎𝑛𝑠𝑝−𝑠𝑢𝑝 =∑ 𝑤𝑆𝑜𝑖𝑙(𝑙). 𝑘𝑇𝑟𝑎𝑛𝑠𝑝
2

𝑙=1
          (9) 

 

where, αveg is the alpha coefficient of the Priestley-Taylor formula (calibration parameter) and kTransp is the proportion of soil 180 

water available for transpiration (calibration parameter). In supply limited conditions, kTransp effectively acts as a decay 

parameter that defines the depletion of the soil water storage via transpiration. 

 

While water in wSoil is directly available for ET, wDeep is only indirectly accessible by capillary rise, and the water stored 

in wSlow is not plant-accessible. Total water storage is the sum of all water storages, including wSnow, wSoil, wDeep and 185 

wSlow. Although groundwater and surface water storages are not implemented explicitly, they are effectively included in 

wDeep and wSlow, especially after calibration of associated storage parameters against GRACE TWS. 
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Figure 1 Schematic of the underlying model structure, with blue font denoting forcing data: Precip = precipitation, Tair = air 

temperature. Boxes represent states: Eint = interception storage, wSnow = snow water storage, wSoil(1) = upper soil layer, wSoil(2) 190 
= second soil layer, wDeep = deep water storage, and wSlow = slowly varying water storage. Arrows denote fluxes: Rain = rain fall, 

Snow = snow fall, ESub = sublimation, Qmelt = snow melt, Iin = incoming water from throughfall and snow melt, Iexc = infiltration 

excess, Qfast = fast direct runoff, Qslow = slow runoff, Q = total runoff, EInt = evaporation from interception storage, ESoil = soil 

evaporation, ETransp = plant transpiration, ET = total evpotranspiration, fDeepSoil = flux between wSoil and wDeep (percolation resp. 

capillary rise), fDeepSlow = flux from wDeep to wSlow. Bold print highlights model variables that are constraint in the calibration. 195 
Green highlights show where vegetation influence is included: [1] the parameter pveg to define each grid cell’s vegetation fraction, 

[2] the parameter wSoilmax(2) that defines the maximum plant available soil water, and [3] the parameter pberg to define the 

infiltration and runoff generation partitioning. 

 

Table 1 Data used for model forcing, description of vegetation characteristics and for model calibration. 200 

 Product Space Time Data 

Uncertainty 

Reference 

Forcing 

Precip GPCP 1dd v1.2 global daily  Huffmann et al. 2000 

Tair CRUNCEP v6 global daily  Vivoy et al. 2015 

Rn CERES Ed4A global daily  Wielicki et al. 1996 

Vegetation Characteristics 

EVI based on MCD43C1 v6 (MODIS 

daily BDRF), calculated via MODIS 

standard EVI formula 

 daily 

climatology 

 Schaaf & Wang 2015 

RD1 maximum rooting depth  static  Fan et al. 2017 

RD2 effective rooting depth  static  Yang et al. 2016 

RD3 maximum soil water storage capacity  static  Wang-Erlandson et al. 
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2016 

RD4 maximum plant available water 

capacity 

 static  Tian et al. 2019 

Calibration 

wTWS GRACE mascon RL06 global monthly with product Wiese et al. 2018 

wSoil ESA CCI SM v4.04 (combined 

product) 

~global daily with product Dorigo et al. 2017 

ET FLUXCOM RS ensemble global daily with product Jung et al. 2018 

Q GRUN v1 global monthly ~ 50 % Ghiggi et al. 2019 

 

2.2.1 Including Vegetation Characteristics 

We include three aspects of vegetation influence on hydrological processes: 1) the specific transpiration demand by 

vegetation, 2) the soil water supply for transpiration via roots, and 3) the influence of vegetation on infiltration and runoff 

generation. These three aspects are controlled by three corresponding model parameters, namely the grid cell’s (active) 205 

vegetation fraction (pveg), the plant available soil water (wSoilmax2), and the runoff generation/infiltration coefficient (pberg). 

In the VEG experiment, scalar parameters are used as linear multipliers of observation-based spatio-temporal patterns. This 

step is considered necessary to handle the differences among different datasets, while still harvesting the information of 

spatial and temporal patterns from the observations. Alternatively, the scalars can be interpreted as scaling factors or weights 

of different observational data streams. By calibrating the scalars, the weight given to observational pattern is constrained by 210 

the data streams used for model calibration. 

 

2.2.1.1 Vegetation Fraction 

The parameter pveg reflects the active vegetation cover of each grid cell that influences the grid’s interception storage, 

transpiration demand, and partitioning of evapotranspiration components. To describe its spatial and seasonal variations, we 215 

include the mean seasonal cycle (MSC) of the Enhanced Vegetation Index (EVI). Therefore, pveg at time step is defined as 

linear function of EVI, where sEVI is the calibrated scaling parameter: 

 

𝑝𝑣𝑒𝑔 = 𝑠𝐸𝑉𝐼 ∙ 𝐸𝑉𝐼            (10) 

 220 

with 0 ≤ pveg ≤ 1. 

 

EVI data is calculated via the MODIS standard formula (Didan & Barreto-Munoz) using the daily BRDF, nadir BRDF 

adjusted reflectance values MCD43C1 v6 (Schaaf &Wang 2015) for the period 01.2001 – 12.2014: 

 225 

𝐸𝑉𝐼 = 2.5  
𝑁𝐼𝑅 −𝑅𝑒𝑑

𝑁𝐼𝑅+6∙𝑅𝑒𝑑 −7.5∙𝐵𝑙𝑢𝑒+1
            (11) 
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Since the daily EVI time series are not continuous due to noise and missing values during cloudy conditions, snow and 

darkness, the data was preprocessed to be used in the model. For each grid cell, we calculate the median seasonal cycle, fill 

long gaps during winter time with a low value, interpolate missing values, and smooth the time series. Therefor, winter is 230 

defined as days with negative net radiation and gaps are considered long when 10 consecutive days of EVI data is missing. 

The winter time gaps are filled with the 5th percentile of available winter time data. The remaining missing values are 

linearly interpolated and finally the resulting seasonal cycle is smoothed by a local regression with weighted linear least 

squares and a 1st order polynomial model. 

 235 

2.2.1.2 Plant available Soil Water 

In order to determine the soil water supply for transpiration as a function of vegetation, we define the maximum soil water 

capacity of the 2nd soil layer wSoilmax(2) based on either rooting depth or soil water capacity data. We include the maximum 

rooting depth by Fan et al. (2017) (RD1), effective rooting depth by Yang et al. (2016) (RD2), maximum soil water capacity 

by Wang-Erlandsson et al. (2016) (RD3) and maximum plant accessible water capacity by Tian et al. (2019) (RD4). Due to 240 

our definition of wSoilmax(2) as maximum plant accessible water, all four data are, theoretically, suitable when focusing on 

spatial patterns. Practically, though, they vary in their definition, underlying approaches, spatial coverage and derived spatial 

pattern. The RD1 and RD2 are based on principles of vegetation optimality and plant adaption, and RD3 and RD4 are based 

on a water-balance perspective but using Earth-observations and/or data assimilation techniques. Therefore, we employ an 

approach in which the weight of each data is calibrated, and their calibrated values are necessarily constrained by either the 245 

ET or TWS data. The maximum soil water capacity is therefore calculated as: 

 

𝑤𝑆𝑜𝑖𝑙max(2) =∑ 𝑠𝑅𝐷(𝑑) ∙ 𝑅𝐷(𝑑)
4

𝑑=1
          (12) 

 

where RD(d) is the data from each data stream d and sRD(d) are the corresponding scaling factors that are calibrated 250 

specifically for each RD data. As RD4 from Tian et al. (2019) is only available for arid to moderately humid vegetated land 

area and excludes tropical forests (Tian et al., 2019), resulting gaps in the study area are filled by the calibration parameter 

wSoilmax(RD4) prior to scaling RD4. 

 

2.2.1.3 Runoff/Infiltration Coefficient 255 

Finally, vegetation structure also affects the infiltration and runoff generation process as it alters the surface and sub-surface 

characteristics. To reflect this influence, we describe the infiltration/runoff parameter pberg as linear function of vegetation 

fraction pveg: 
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𝑝𝑏𝑒𝑟𝑔 = 𝑠𝑏𝑒𝑟𝑔 ∙ 𝑝𝑣𝑒𝑔            (13) 260 

 

where sberg is the calibrated scaling parameter. 

2.4 Model Calibration 

In order to keep computational costs low and avoid overfitting of parameters, we perform model calibration for a spatial 

subset of selected grid cells that include only 8% of the total study area. The calibration grid cells are chosen by a stratified 265 

random sampling method that maintains the overall proportion of different climate and hydrological regimes defined by 

Köppen-Geiger climate regions (Kottek et al., 2006). 

Since this study focuses on the impact of vegetation and in order to keep the number of calibration parameters low, we do 

not optimize snow related parameters and focus on the vegetation related parameters. Instead, the optimized snow 

parameters from Trautmann et al. 2018 are used. This results in a total of 11 calibration parameters for the B model and a 270 

total of 16 parameters for the VEG model (Table 2). 

In order to constrain different aspects of the water cycle, we use a multi-criteria calibration approach similar to Trautmann et 

al. 2018. The parameters of each model variant are simultaneously optimized against multiple observational constraints, 

including monthly TWS anomalies from GRACE (Wiese et al. 2018), ESA CCI Soil Moisture (Dorigo et al., 2017), 

evapotranspiration estimates from FLUXCOM-RS ensemble (Jung et al., 2019) and gridded runoff from GRUN (Ghiggi et 275 

al., 2019) (Table 1).  

For each of the observational constraints, we calculate a cost term that considers the data’s specific strengths and 

uncertainties, as well as each grid cell’s area. Thereby, we only use grid cells and time steps with available observations, 

which vary for the different data streams. To retrieve one cost term per observational constraint, we concatenate the 

timeseries of all grid cells into a single vector for which costs are calculated. The individual cost terms are considered to 280 

have the full weight of 1, resulting in a total cost value (𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙) as a sum of individual cost. The total cost is then 

minimized during the optimization process using a global search algorithm, the Covariance Matrix Evolutionary Strategy 

(CMAES) algorithm (Hansen and Kern, 2004). 

 

𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 =∑ 𝑐𝑜𝑠𝑡(𝑑𝑠)
𝑛𝑑𝑠

𝑑𝑠=1
           (14) 285 

 

where, cost(ds) is the cost for each data stream ds. For wTWS, ET and Q, the cost terms are based on the weighted Nash 

Sutcliff Efficiency (Nash and Sutcliffe, 1970), which explicitly considers the observational uncertainty σ:  

 

𝑐𝑜𝑠𝑡 = 
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖
𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑜𝑏𝑠)

2

𝜎𝑖

𝑛
𝑖=1

            (15) 290 
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where xmod,i is the modelled variable, xobs,i is the observed variable, x̅obs is the average of xobs, and σi is the uncertainty of xobs 

of each data point i. The cost criterion reflects the overall fit in terms of variances and biases, with an optimal value of 0 and 

a range from 0-∞. 

Owing to the larger uncertainties of Qobs on inter-annual scales (Ghiggi et al., 2019), we only use the monthly mean seasonal 295 

cycle, while for the other variables, full monthly time series were used. 

To define σ of ETobs, we utilize the median absolute deviation of the FLUXCOM-RS ensemble. For Qobs, we assume an 

average uncertainty of 50% based on values reported in Ghiggi et al. (2019). For wTWSobs, the spatially and temporally 

varying uncertainty information provided with the GRACE data is used. Besides, the largest monthly values of wTWSobs (< -

500 mm and > 500 mm) were masked out to avoid the effect of outliers on optimization results. Note that these outliers 300 

represent less than 0.5%, and are mainly located in coastal arctic regions, and are, thus, potentially related to land and sea-ice 

and/or leakage from neighboring grid cells over ocean. Before calculating 𝑐𝑜𝑠𝑡𝑤𝑇𝑊𝑆, the monthly means of observed and 

modelled wTWS are respectively removed to calculate anomalies over a common time period 01.01.2002–31.12.2012. 

 

Since remote sensing-based soil moisture only captures the top few centimeters of soil depth, usually 5 cm, costwSoil is 305 

calculated based on the modelled soil moisture in the first soil layer. As the combined ESA CCI soil moisture imposes 

absolute values and ranges from GLDAS-Noah (Dorigo et al., 2015), we use Pearson’s correlation coefficient as costwSoil, 

and focus on soil moisture dynamics that is most reflective of the original remote sensing observation. Only estimates from 

01.01.2007 onwards are considered, as data before that period is sparse. Further, costwSoil is calculated from the monthly 

average values to avoid large variations and potentially large noise in the daily data. Thereby, only months with observations 310 

available for at least 10 days are considered. Due to snow cover, the temporal coverage of the product decreases with 

increasing latitude. Therefore, to prevent a bias towards northern summer months, we also exclude grid cells that lack more 

than 40% of monthly estimates. After these filtering for missing data, monthly time series for 56% of the total study area and 

51% of the calibration grids are available. 

2.5 Model Evaluation and Analysis 315 

For model evaluation, we contrast the optimized parameter values and their uncertainties. The relative uncertainty in the 

optimized parameter vector is estimated by quantifying each parameter’s standard error according to Omlin and Reichert 

(1999) and Draper and Smith (1981), similar to Trautmann et al. (2018). 

 

For each experiment, the optimized parameter sets are used to produce model simulations for the entire study area. Their 320 

performances are then evaluated using Pearson’s correlation coefficient and uncertainty weighted Nash-Sutcliff efficiency 

for wTWS, ET and Q observations (Eq. 16). The performances are evaluated on local (for each grid cell individually), 

regional and on global scales.  
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𝑤𝑁𝑆𝐸 = 1 −
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖
𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑜𝑏𝑠)

2

𝜎𝑖

𝑛
𝑖=1

            (16) 325 

 

For the regional analysis, we derive 5 hydroclimatic regions by performing a cluster analysis using the spatiotemporal 

characteristics of wTWS, ET and Q observations, as well as each grid cell’s latitude. By that, each zone is characterized by 

similar seasonal dynamics and amplitudes of the constraints, allowing a better comparison when evaluating regional 

averages. The resulting regions are shown in Fig. 2. Region 1 comprises the snow dominated northern latitudes (Cold), while 330 

region 2 includes the moderate mid latitudes (Temperate). Very humid and mostly tropical regions are combined in region 3 

(Humid). Region 4 is characterized by a distinct rain season (Sub-humid), while region 5 includes semi-arid areas in low 

latitudes (Semi-arid). 

 

 335 

Figure 2 Regions used for model evaluation and analysis. 

 

Finally, we assess the contributions of the four water storage components, wSnow, wSoil, wDeep and wSlow, to seasonal and 

inter-annual variations of the total water storage across spatial scales, i.e. the local grid cell, the regional and the global 

average. To do so, we apply the Impact Index I following Getirana et al. (2017). The metric describes the contribution C of 340 

each water storage s as the sum of its absolute monthly anomaly: 

 

𝐶𝑠 =∑ |𝑠𝑡 −𝑠|
𝑛𝑡
𝑡=1             (17) 

 

Where, 𝑠 is the average storage of the timesteps t-nt; with nt = 12 for mean seasonal and nt = 178 for inter-annual dynamics. 345 
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The Impact Index 𝐼𝑠 is then defined as the ratio of each water storage component contribution 𝐶𝑠 to the total contributions 

from all storage components: 

 

𝐼𝑠 =
𝐶𝑠

∑ 𝐶𝑠
𝑛
𝑠=1

             (18) 

 350 

The value of Is range from 0-1, with 0 indicating no impact and 1 indicating full control of all variations. 

3 Results 

In the following section we first evaluate the performance of both calibrated model variants by comparing the calibrated 

model parameters and validate modelled wTWS, ET and Q against observations at global, regional and local scale. 

Subsequently, we show the contribution of individual storage components to TWS variability for B and VEG on different 355 

spatial and temporal scales. 

3.1 Model Evaluation 

3.1.1 Calibrated Parameters 

Table 2 summarizes the calibrated parameters and their uncertainties for the B and VEG model experiments. Overall, 

including vegetation leads to more plausible parameter values after calibration, while in B several parameters hit their 360 

expected bounds. Furthermore, very high parameter uncertainties, indicating unconstrained values, could be drastically 

reduced in VEG and the interactions among different parameters are reduced with fewer parameters showing correlation 

(S3).  

 

For B, pveg suggests that on average only 37% of each grid cell are covered with vegetation globally. Despite having a good 365 

performance of modelled ET, the vegetation fraction is relatively low, but transpiration is increased by a high αveg value 

(2.25), which is much higher than commonly used alpha coefficient of the Priestley-Taylor equation of 1.2 or 1.26 (Lu et al., 

2005). At the same time, a very low fraction of the first layer soil layer is available for evaporation, as kSoil hits the lower 

bound of 10%. Besides, the parameters controlling the drainage from deep and slow water storage (dDeep, dSlow) are high 

resulting in a fast drainage, and effectively discarding the hydrological influences of these water pools.  370 

For VEG, the median vegetation fraction is 73 %, leading to a more realistic fraction of soil moisture being available for 

evaporation (kSoil = 0.4), which is similar to the mode value of 0.33 reported by McColl et al. (2017), and a more realistic αveg 

value of 0.92, that effectively leads to the median Priestley-Taylor alpha coefficient of 0.81 (S2). In comparison to B, the 

resulting wSoilmax(2) of VEG is with a median value of 52 mm considerably lower. Its spatial pattern mainly originates from 

RD3 and RD4 data, while RD1 contributes only little and RD2 data is negligible. The resulting spatial patterns of the 375 
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maximum soil water capacity from the combination of all datasets are yet consistent with those from other estimates and 

patterns of rooting depth (e.g., Schenk and Jackson (2005)). We note here that the soil water capacity data are favoured over 

the rooting depth data. This agrees with Küçük et al. (2020), who suggest that estimating plant storage capacity based on 

Earth-Observation data may be more suitable than those using optimality principles. Besides, wSoilmax(2) is defined as 

maximum plant accessible soil storage, but also used to describe the maximum soil water storage. Due to their retrieval, the 380 

rooting depth data RD1 and RD2 suggest deep roots in warm/dry regions, while shallow roots would be sufficient in wet 

conditions. Therefore, RD1 and RD2’s spatial pattern with deep roots in dry/warm regions and shallow roots in wet 

conditions behaves anti-proportional to the actual (maximum) soil water storage aimed for in this study. Related to the 

limited size of wSoil, calibration enforces a deeper and a slow water storage with reasonable depletion parameters (dDeep, 

dSlow). Overall, in VEG, only the kTransp parameter, which describes the fraction of the 2nd soil layer that is available for 385 

transpiration, is higher than reported values of ET decay between 0.02- 0.08 (Teuling et al., 2006). 

 

Table 2 Calibrated model parameters, their description, range and calibrated values for experiments B and VEG. Red fonts 

highlight calibrated values at the predefined parameter bounds. 

parameter description units default 

value 

range calibrated values ± 

uncertainty (%) 

     B VEG 

vegetation fraction 

𝑝𝑣𝑒𝑔 active vegetation fraction of the grid 

cell 

 0.5 0.3 - 1  0.37 ± 0.05   

𝑠𝐸𝑉𝐼  scaling parameter to derive active 

vegetation fraction from EVI data 

 1 0 - 5   3.89 ± 0.05 

evapotranspiration 

𝑝𝐼𝑛𝑡 interception storage mm 1 0 - 10 1.0 ± 0.08 0.6 ± 0.02 

𝑘𝑆𝑜𝑖𝑙  fraction of 1st soil layer available for 

evaporation 

 0.5 0.1 - 

0.95 

0.1 ± 0.01 0.4 ± 0.08 

𝛼𝑣𝑒𝑔 alpha parameter of the Priestley-Taylor 

equation 

 1 0.2 - 3 2.25 ± 0.15 0.92 ± 0.00 

𝑘𝑇𝑟𝑎𝑛𝑠𝑝 fraction of soil water available for 

transpiration 

 0.02 0 - 1 0.12 ± 0.32 0.48 ± 1.76 

infiltration/runoff 

𝑝𝑏𝑒𝑟𝑔 runoff-infiltration coefficient  1.1 0.1 - 5 1.32 ± 0.02   

𝑠𝑏𝑒𝑟𝑔 scaling parameter to derive the runoff-

infiltration coefficient from 𝑝𝑣𝑒𝑔 

 3 0.1 - 

10 

  3.08 ± 0.02 

soil moisture 

𝑤𝑆𝑜𝑖𝑙max(2) maximum (available) water capacity of 

the 2nd soil layer 

mm 300 10 - 

1000 

752 ± 0.02   

𝑠𝑅𝐷(1) weight to include maximum rooting 

depth by Fan et al. 2017 

 0.05 0 - 5   0.01 ± 0.00 

𝑠𝑅𝐷(2) weight to include effective rooting 

depth by Yang et al. 2016 

 0.05 0 - 5   0.00 ± 0.00 

𝑠𝑅𝐷(3) weight to include maximum soil water 

storage capacity by Wang-Erlandson et 

 0.05 0 - 5   0.15 ± 0.06 
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al. 2016 

𝑠𝑅𝐷(4) weight to include plant available water 

capacity by Tian et al. 2019 

 0.05 0 - 5   0.15 ± 0.07 

𝑤𝑆𝑜𝑖𝑙max(𝑅𝐷4) maximum (available) water capacity of 

the 2nd soil layer for grids with missing 

estimates in Tian et al. 2019 

mm 50 0 - 

1000 

  145 ± 0.08 

deep soil 

𝑠𝑑𝑒𝑒𝑝 scaling parameter to derive the 

maximum deep soil storage from 

𝑤𝑆𝑜𝑖𝑙max(2) 

 0.5 0 - 50 9.1 ± 

461317 

5.6 ± 0.21 

𝑓𝑚𝑎𝑥 maximum flux rate between deep soil 

and the 2nd soil layer 

mm 

d-1 

10 0 - 20 1.5 ± 0.00 5.1 ± 0.01 

𝑑𝐷𝑒𝑒𝑝 depletion coefficient from deep soil to 

delayed water storage 

 0.5 0 - 1 1.0 ± 5.61 0.01 ± 0.00 

delayed water storage 

𝑟𝑓𝑆𝑙𝑜𝑤  recharge fraction of infiltration excess 

into delayed water storage 

 0.5 0 - 1 0.78 ± 1.72 0.68 ± 0.01 

𝑑𝑆𝑙𝑜𝑤  depletion coefficient from delayed 

water storage to slow runoff 

 0.01 0 - 1 1.0 ± 2329 0.02 ± 0.03 

 390 

3.1.2 Model Performance 

Table 3 contrasts the overall model performance metrics for wTWS, ET and Q for the two experiments for the calibration 

subset of 8% grid cells (opti) and the entire study domain (global). The metrics are calculated in the same way as during 

optimization, i.e., by concatenation of the timeseries of all grids into a single vector for which statistics are calculated. In 

general, the differences between opti and global, as well as between B and VEG are marginal. For VEG, results mainly 395 

improve for wTWS, and slightly for ET. Although the models were only calibrated for the spatial subset in opti, equally 

good or even better performances are obtained when the calibrated parameters are applied over the entire study domain. This 

suggests that the calibration subset was representative of the entire study domain and the calibration did not overfit the 

model parameters.  

Among the variables, the best model performances in terms of wNSE and corr is obtained for ET. While the correlation 400 

between observed and simulated wTWS is high, the overall wNSE is relatively low, which mainly results from higher 

uncertainties in TWSobs and a larger variance error, likely originating from grid cells with low observed TWS variance.  

 

Table 3 Overall model performance metrics in terms of weighted Nash-Sutcliff efficiency (wNSE) and Pearson’s correlation 

coefficient (corr) of total water storage (wTWS), evapotranspiration (ET) and runoff (Q) in B and VEG experiments for the 405 
calibration subset (opti) and the entire study domain (global). 

 wTWS ET Q 

 wNSE corr wNSE corr wNSE (MSC) corr (MSC) 

 opti global opti global opti global opti global opti global opti global 

B 0.33 0.33 0.69 0.69 0.97 0.97 0.90 0.90 0.63 0.63 0.86 0.86 

VEG 0.38 0.41 0.71 0.72 0.98 0.98 0.90 0.91 0.60 0.57 0.85 0.85 
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Similar to the global metrics, the average mean seasonal cycle of different regions shows an equally good or slightly better 

performance of VEG compared to B regarding all variables (Fig. 2). At regional scale (Fig. 4), the general pattern of grid-410 

wise Pearson correlation is similar for both experiments. However, the difference between the correlation coefficients 

highlights an improvement using VEG for a large proportion of grid cells, and regarding all variables (indicated by brown 

color). In the next section, regional and local performances are explained for wTWS, ET and finally Q. 

 

For wTWS, the amplitude at the global scale is well-captured, yet with a phase difference of ~1 month in both model 415 

variants, which both lead the timing of peak storage (Fig. 3). The phase shift is also apparent in the Temperate and Cold 

regions, while the seasonal dynamics in Sub-humid and Humid region is captured well, yet with an underestimation of the 

amplitude. Though differences are small, VEG obtains higher correlation and a smaller bias except for the Semi-arid region. 

At local scale, correlation with GRACE TWS is lowest in rather semi-arid grid cells (Fig. 4), where wTWS variation is low 

and it has lower impact on the global wNSE, which determines the cost in model calibration. However, including spatial 420 

pattern of vegetation improves wTWS mainly in these (semi-)arid regions. 

Regarding ET, both experiments reproduce seasonal dynamics in all regions quite well, yet tend to underestimate ET in the 

Semi-arid, Sub-humid and Humid regions, especially in months with low ET (Fig. 3). At grid-scale (Fig. 4), correlation of 

ET is very high, except for tropical regions. Compared to B, VEG improves correlation here, as well as in some (semi-)arid 

regions such as the Sahel zone and the Western US. 425 

In contrast to ET, performance for Q is generally the best in regions with poorer model performance in terms of ET (Semi-

arid, Sub-humid and Humid regions) (Fig. 3), suggesting a trade-off between the two different observation data streams. 

Nonetheless, including vegetation improves peak runoff in all regions and reduces the underestimation of Q especially in the 

Cold region. While the improvement of Q simulations in Northern latitudes gets even more obvious at grid-scale, B shows 

higher correlation with observations in Africa and the Mediterranean (Fig. 4).  430 
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Figure 3 Global and regional mean seasonal cycles of total water storage (wTWS), evapotranspiration (ET) and runoff (Q) for the 

B and VEG experiments compared to the observational constraints by GRACE (wTWS), FLUXCOM (ET) and GRUN (Q). 

 435 

Figure 4 Grid-wise Pearson’s correlation coefficient for total water storage (wTWS), evapotranspiration (ET) and runoff (Q) 

between 1) observations and B, and 2) observations and VEG, as well as differences between 1) and 2) (brown color, i.e., negative 

values indicate higher correlations for VEG, while purple color, i.e., positive values indicate better correlation values for B). 
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3.2 Contribution of Vegetation to TWS Variability 

In this section, we present the influences of vegetation on TWS partitioning into snow (wSnow), plant-accessible soil 440 

moisture (wSoil), not directly plant-accessible deep soil water (wDeep) and non-plant-accessible slow water storages 

(wSlow) at different spatial and temporal scales. We first focus on mean seasonal dynamics and continue with the 

contribution of each component to inter-annual TWS variability at local grid-cell and regional scales, respectively, before 

presenting the analysis at the global scale.  

3.2.1 Local & Regional Scale 445 

Figure 5 shows the contribution of individual water storages to mean seasonal TWS variations at local grid-scale. For both B 

and VEG, wSnow has the highest impact in Northern latitudes and high altitudes where snow fall occurs regularly. Locally, 

the contribution of liquid water increases gradually with decreasing latitude and, finally, causes all TWS variations south of 

~45° N. Within the liquid water storages, B attributes nearly all variations to directly plant accessible soil moisture wSoil, 

with an average of 76% over all grid cells. While showing a similar pattern of increasing contribution towards lower 450 

latitudes, the VEG experiment only has an average of 17% contribution from wSoil. Instead, most variations (40%) are due 

to variability in the deeper soil storage, wDeep. Besides, the average impact of slow water storages wSlow (20%) is 

comparable to that of wSnow (22%) in VEG, though it is spatially much more limited to tropical regions, such as the 

Amazon basin.  

Mean seasonal dynamics averaged globally and for different regions are shown in Fig. 6. As indicated by the grid-scale 455 

results, wSnow dominates TWS variations in the northern Cold region (73% in B, resp. 69% in VEG), and plays a 

considerable role in the Temperate region (28% resp. 26%). For the other regions, B attributes nearly all remaining 

variability to wSoil, while in VEG wDeep has the highest Impact Index (59% in Semi-arid, 50% in Sub-humid and 43% in 

Humid).  

 460 
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Figure 5 Global distribution of the Impact Index, I, for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for B and VEG. 

 

 465 

Figure 6 Global and regional average mean seasonal cycles of simulated total water storage and its components for B and VEG, 

including the regional Impact Index I for each storage. 

 

At the inter-annual scales, the impact of wSnow decreases to 10% (B) respectively 12% (VEG) locally (Fig. 7). For most of 

the grid cells, all inter-annual TWS variations are caused by wSoil in B. In VEG however, the deeper soil layer wDeep is 470 

again the most important storage, with an average Impact Index of 53% for all grid cells. The contribution of wSoil and 

wSlow remain more or less the same as those for seasonal TWS variations.  

Average contributions for different regions and globally (S4) show again that, in B, nearly all inter-annual wTWS variability 

is caused by wSoil (87-99%). Only in the Cold region, the impact of wSoil decreases to 69% in the favor of wSnow (31%). 

Similar to the local scale, in VEG, wDeep explains > 50% of wTWS variability in most regions, only in the Cold region, the 475 

contribution of wDeep is similar to wSnow (39% vs. 38%). The contribution of wSoil ranges from 9% (Cold) to 19% (Semi-
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arid), while the impact of wSlow is between 16-18% in most regions and increases in Sub-humid (24%) and Humid (34%) 

regions.  

 

 480 

Figure 7 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage 

(wDeep) and delayed water storage (wSlow) to the inter-annual variability of total water storage, for B and VEG. 

 

3.2.2 Global Scale 

Finally, Fig. 8 contrasts the impact of water storage components to the total storage, in B and VEG, at the global scale. As 485 

with the local and regional scales, including vegetation differentiates the composition of global TWS variations drastically. 

In both experiments, wSnow clearly dominates the spatially aggregated mean seasonal cycle with an Impact Index of 71% 

(B) and 69% (VEG). These contributions are considerably higher than the average local Impact Index over all grid cells (B 

24%, VEG 22%; Fig. 5). As already seen at local scale, liquid water storages dominate the inter-annual TWS variability, 

whereby B and VEG differ in the attribution to different components of the liquid water storage. In B, all variations other 490 

than wSnow originates from wSoil, but wDeep dominates in VEG. Especially at inter-annual scales, wDeep accounts for half 

of all TWS variations. In contrast to B, in VEG, wSoil only has a minor impact of 7% at seasonal and 13% at inter-annual 

scale. Instead, wSlow has a moderate contribution of 11% (mean seasonal) and. 17% (inter-annual). In contrast to the mean 

seasonal dynamics in which the dominating storage are different at local and global scales, the inter-annual dynamics are 

consistent across scales with the same storage component dominating at both local and global scale (Fig. 5,7,8).  495 
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Figure 8 Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and delayed 

water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, for B and 

VEG. 500 

4 Discussion 

In order to address the two main research questions of this study, the following section discusses the above shown 

differences between B and VEG, first regarding model performance and finally regarding the modelled partitioning of 

wTWS. 

4.1 Model Performance 505 

Both experiments have good performance against the observational constraints, and the differences between B and VEG are 

marginal over the global scale. However, there are not only systematic spatial differences at the regional and local scale, but 

also calibrated parameter values are more realistic and with smaller interactions among each other (less equifinal) in the 

VEG experiment. The latter suggests a more realistic representation of fluxes and states in VEG even though they are not 

directly constrained during the calibration process. Remaining discrepancies compared to observations can be associated 510 

with shortcomings and uncertainties in the observational data, as well as to the processes that are not represented in the 

rather simple model structure.  

 

The differences in the seasonal phase of global wTWS in both model experiments mainly originate from the Temperate and 

Cold regions, and such differences have been reported previously (Döll et al., 2014;Schellekens et al., 2017;Trautmann et al., 515 

2018). One of the potential reasons is the intermediate storage of melt water during spring in rivers and other surface water 

bodies, which occurs coherently over large areas in mid-to-high latitudes (Döll et al., 2014;Schellekens et al., 2017;Schmidt 

et al., 2008;Kim et al., 2009), and thus potentially delays the storage decay. In this context, also lateral water transport may 

additionally affect the wTWS variations in downstream grid cells. Yet, such processes and conditions are neither represented 

in B nor VEG.  520 
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Weaker performance of wTWS in (semi-) arid regions, on the one hand, originates from a low influence of these regions on 

global wNSE, because of low observed TWS variations and a high signal-to-noise ratio (Scanlon et al. 2016). Therefore, less 

weight is given to those grid cells in the cost component during calibration. On the other hand, alteration by human activities 

like groundwater withdrawal, dams and irrigation to overcome the natural water shortage in such regions as North-East 

China and the American (Mid-)West can be regionally large in relative terms. While we aimed to exclude grid cells with 525 

large human impact a priori, we cannot completely exclude the influence of the aforementioned anthropogenic processes, 

that are not explicitly represented in our model experiments. It should, however, be noted that the observational EVI data 

used in the VEG experiment do have an imprint (of the effects) of irrigated agriculture in terms of increased vegetation 

activity. This may be associated with an improved simulation of wTWS variations in such regions in the VEG experiment. 

While overall ET performance is good, tropical regions peak out with low correlation. These areas are associated with higher 530 

uncertainties in the FLUXCOM ET estimates due to issues with the energy closure gap. Nonetheless, including vegetation 

data improves simulated ET here, suggesting a better representation of the characteristic highly active vegetation compared 

to other regions and to global averages. Besides, VEG improves ET mainly in supply-limited regions for the reasons already 

presented above for improved TWS performance in (semi-) arid regions. 

The trade-off between the performances, more specifically bias, of Q and ET simulations suggest possible inconsistencies 535 

between the ET and Q constraints from independent sources. Additionally, the bias regarding either ET or Q, may relate to 

shortcomings in the precipitation forcing that doesn’t provide sufficient input to support both outgoing water fluxes. Lastly , 

some remaining deterioration of performance of Q may originate from deficiencies in the GRUN product itself which was 

generated with climatic drivers only, disregarding information on spatio-temporal variations in vegetation (Ghiggi et al., 

2019). 540 

The improvement of Q in Northern latitudes is associated with the activation of the slow and delayed storage in the VEG 

experiment with spatial varying parameterization of soil water storage capacity. The slow storage represents better the runoff 

delay in surface water and rivers in these regions that results in improvements of low flow during winter as well as the 

increase of runoff during spring (Fig. 3). Such delayed runoff also improves the simulation of peak runoff in the Sub-humid 

and Humid regions.  545 

The remaining deficiencies in model performance, especially in the Cold region, indicate missing processes in the simple 

model structure. Such processes include freeze/thaw dynamics, permafrost and ice jam in river channels that would increase 

surface water storage and allow high spring flood. Besides, snow parameters have been calibrated against remote sensing-

based GlobSnow Snow Water Equivalent that is known to saturate for deep snow conditions (Luojus et al., 2014) (see 

Trautmann et al. (2018)). Although the calibration process considered this shortcoming, an underestimation of modelled 550 

snow accumulation is possible – leading to an underestimation of peak snow pack in winter that would result in an 

underestimation of runoff due to lower snowmelt in spring. 
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While the VEG experiment presented here considers all 3 aspects of vegetation influences on hydrological processes (see 

section 2.2.1), we also run experiments with including these aspects separately into model calibration (not shown). These 555 

analyses found that the largest improvement was obtained when including soil water storage capacity as a function of rooting 

depth and storage capacity data, and a rather low impact when considering the runoff/infiltration partitioning as a function of 

vegetation fraction. This highlights the central role of soil water storages and the importance of adequately describing soil 

moisture pattern and dynamics in hydrological models. 

4.2 Contribution to TWS Variability 560 

Both model experiments agree with previous studies (Trautmann et al., 2018) in showing a dominating role of snow 

accumulation and depletion on global seasonal TWS variability, and the same of liquid water storage on inter-annual scales. 

At the same time, the contribution of individual storages to TWS variations differ at the local grid-scale compared to when 

they are averaged over a region or globally. In B, all variations other than wSnow originates from directly plant accessible 

soil moisture, whereas, in VEG, the deeper soil storage wDeep becomes the most important. Therefore, including 565 

observation-based information on vegetation changes the attribution of TWS variations drastically, while the variations of 

total TWS themselves do not change significantly. 

 

In the following, we briefly focus on the varying TWS composition among spatial scales, and finally discuss the systematic 

differences between B and VEG.  570 

 

Differences among scales 

Albeit their global coverage, the presented results agree with previous regional studies focusing on Northern mid-to-high 

latitudes (Trautmann et al., 2018). Snow dominates seasonal TWS variations locally and regionally in higher northern 

latitudes and altitudes (Güntner et al., 2007). Its stronger contribution on spatially aggregated signals can be explained by the 575 

spatial coherence of snow accumulation over larger areas. Liquid water storages, on the other hand, are more spatially 

heterogenous, with increasing and decreasing dynamics across regions that cancel out and compensate each other when 

spatially aggregated (Trautmann et al., 2018;Jung et al., 2017).  

In contrast to the mean seasonal dynamics, the inter-annual Impact Indices of the storage components at the global scale are 

similar to the average local Impact Indices (Fig. 7 and Fig. 8). This suggests that at inter-annual time scales, there is no 580 

spatially coherent pattern of one single storage component that leads to higher accumulated Impact Indices than the local 

averages. 

 

Differences among model experiments 

Differences in the composition of TWS variability between B and VEG are effectively reflected in the differences of 585 

calibrated parameters. In B, the directly plant accessible soil water storage is larger, due to a higher effective wSoilmax(2), 
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while delayed water storages are ‘turned off’ because of increased drainage (dDeep, dSlow), reducing the variations in wDeep 

and wSlow. Although VEG has been calibrated in the same way with the same observational constraints, calibrated model 

parameters differ as the included data on vegetation characteristics provides complementary information on spatial and 

temporal patterns. Therefore, the resulting calibrated parameters can be assumed to be more realistic. For example, they 590 

enable (delayed) longer-term water storage as well as capillary rise from the deeper soil water storage when the directly plant 

accessible storage dries out. Due to this process, TWS variations are mainly controlled by wDeep in VEG. 

In detail, the increasing importance of the indirect plant-accessible storage wDeep in VEG can be related to the limited 

maximum soil water capacity wSoilmax(2) that is constrained by rooting depth/soil water capacity data, and to a higher kTransp 

parameter. The smaller wSoil storage forces percolation to wDeep, but the water is still available when needed due to the 595 

capillary rise from wDeep to wSoil.  

Removing capillary flux from wDeep to wSoil in fact increases the contribution of wSoil to seasonal variability, while the 

impact of wDeep remains high on inter-annual scales (S7). Thus, the question is whether the derived contributions to TWS 

variability are robust or an artefact of the model formulation. While the contribution of capillary rise to total ET is < 20% for 

most grid cells, it becomes more important in arid‐to‐wet transition regions, e.g., sub‐Saharan Sahel, Savannas, northern 600 

Australia and the Indian subcontinent (Fig. 9). These are regions with high precipitation seasonality, where vegetation grows 

deep roots to access deep unsaturated zone storage and groundwater during the dry season. The spatial patterns do not only 

agree with the findings of Koirala et al. (2014), who applied the physically-based model MATSIRO to investigate the effect 

of capillary flux to hydrological variables, but also with observations. For example, the spatial patterns are in line with the 

predicted probability of deep rooting by Schenk and Jackson (2005), and are supported by Tian et al. 2019 who found that 605 

vegetation remains active long into the dry season in Africa, suggesting that soil-deep soil/groundwater interaction plays a 

considerable role. Therefore, the spatial pattern of where wDeep interacts with wSoil is reasonable, indirectly validating the 

results from VEG. 

While defined as ‘fraction of soil water available for transpiration’, kTransp is also an effective decay parameter for the 

depletion of wSoil via transpiration processes. Plausible values are in the order of 10-3 – 10-2, similar in magnitude to delay 610 

coefficients for baseflow. By calibrating a model against GRACE TWS, it is difficult to decide whether water leaves the 

system slowly via ET or by Q. Additional including ET and Q data in model calibration should have ideally reduced 

equifinality. However, our results suggest that the model is still not constrained well enough: in B, kTransp is more plausible, 

yet other slow depleting storages are ‘turned off’. In contrast, VEG with additional vegetational data, simulates a reasonable 

slow storage that contributes to Q, but has a rather high calibrated kTransp. Fixing kTransp in VEG to 0.05 and optimizing all 615 

other parameters would result again in most TWS variations being caused by wSoil, but with less improvement in model 

performance compared to B (S8). Therefore, TWS decomposition is very sensitive to (certain) parameter values. However, 

VEG and VEG with fixed kTransp qualitatively agree in the importance of the slow water storage in Humid regions, which 

was also shown by Getirana et al. (2017). 

 620 
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We showed, that even with the same calibration procedure and underlying model structure, TWS composition differs 

drastically between model experiments, and that is indicative of the large impact of the role of vegetation and of transpiration 

water supply within the model.  

As with the presented model variants, TWS composition simulated with existing large-scale hydrological models differs 

widely (Scanlon et al., 2018;Schellekens et al., 2017;Zhang et al., 2017). For example, PCR-GLOBWB and W3RA attribute 625 

seasonal TWS variations in the tropics to groundwater, while other models suggest it is mainly caused by soil moisture. 

Those results are largely dependent on model structure and parametrization, which is potentially a challenge when models 

are used to decompose the integrated GRACE TWS signal, and when implications of different processes and interactions are 

drawn. For example, Humphrey et al. (2018) analysed how the CO2 growth rate is affected by inter-annual fluctuations in 

GRACE TWS, assuming that these represent fluctuations in plant accessible water that influence the carbon uptake of land 630 

ecosystems. In contrast, our study, along with previous reports, show that a significant proportion of the GRACE TWS 

signal in tropics is not directly plant accessible soil moisture, but deeper soil water and slow storage component. The latter 

comprises surface water storage, whose importance for TWS variations in tropical regions has been shown by several studies 

(e.g. Güntner et al. 2007,  Getirana et al. (2017)). 

Although VEG can be considered more reliable because of more realistic parameter values and better model performance, 635 

the current study still has some shortcomings. Despite using a multi-variate calibration, individual component fluxes and 

states may not necessarily be well constrained. To further improve and solidify conclusions, especially on TWS partitioning, 

more constraints, such as deep soil moisture estimates or high-quality observations of surface water are needed. Furthermore, 

spatial constraints for defining the depletion of water storages via ET and Q – either with spatial information on the delay 

parameters (kTransp for ET; dSlow for Q), or for their sub fluxes (transpiration or evaporation; baseflow or direct runoff) would 640 

be beneficial. In this context, runoff characteristics as the baseflow index or the baseflow recession coefficient provided by 

Beck et al. (2015) are potentially useful to define spatial pattern of the slow runoff component. Besides, a GRACE product 

with daily resolution (Eicker et al., 2020) could enable better decomposition and differentiation of fast and slow storages 

whose short-term imprints are lumped in the monthly TWS signal. 

 645 

Figure 9 Total evapotranspiration of VEG with capillary flux from the deep soil water storage (left), and difference compared to a 

model version without capillary flux in mm (center) and as percentage difference (right). 
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5 Conclusion 

In this study, we investigated the effect of vegetation on global hydrological simulations and in particular on the partitioning 

of TWS variations among snow, plant accessible soil moisture, a deep soil and groundwater storage, and a slowly varying 650 

water pool that represent surface and near-surface water storage. To do so, we included observation-based vegetation 

information to parameterize the hydrological processes of evapotranspiration, soil water storage and runoff generation in a 

large-scale hydrological model. With the parsimonious model that was constrained against multiple observations, we 

highlight the value of observation-based datasets in constraining model parameters of global hydrological models, while 

maintaining simple model formulations to evaluate the influences of vegetation in the global hydrological cycle. 655 

First, we find that using a multi-criteria calibration approach allows for different model variants to perform relatively well 

despite major differences in model parameterization among them. In fact, even without vegetation, the model performance 

can be interpreted as reasonable, and more so at the global scale. However, including spatial pattern of vegetation further 

improved the model performance. For example, large improvements were found in supply-limited regions, i.e., (semi-) arid 

regions (TWS and ET) and in tropical regions (ET), and Q simulations both globally and regionally in the northern 660 

hemisphere. Undoubtedly, spatio-temporal variations of vegetation characteristics are relevant for the regional and global 

hydrological simulations. 

Interestingly, we find that the calibrated parameter values are also more reasonable when the model is fed with the 

vegetation information. In particular, parameter interactions and equifinality were reduced even though the same 

observational constraints were used for calibration. 665 

Lastly, we show how vegetation can modulate surface and subsurface hydrological process representation in the model, 

changing the spatial-temporal dynamics of individual storage components while maintaining the same overall response of 

total hydrological fluxes and storage variations. With or without vegetation, seasonal storage variations are dominated by 

snow at the global scale. However, including vegetation drastically changes the attribution of TWS variations among soil 

moisture, deep soil water and slow water storages. Without vegetation, the soil moisture effectively controls most of the 670 

TWS variation, but with vegetation the role of deeper and delayed water storage becomes prominent.  

In summary, this study highlights the value of including vegetation characteristics to further constrain model parameters and 

to reliably represent hydrological processes despite a parsimonious model structure. The findings further suggest an 

important role of groundwater-soil moisture-vegetation interactions for TWS variations. In particular, the representation of 

vegetation related processes in global hydrological models seems to be a key factor controlling TWS partitioning of their 675 

simulations and associated uncertainties. Besides, it emphasizes the need for further observations and observational-based 

estimates, as well as multi-model experiments to provide and understand identifiability in model structure. 

Besides, this study motivates further multi-model experiments to understand the need and potential of existing and novel 

observational constraints to increase the identifiability not only regarding model parameters, but also of model structure. 
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